Convergence to Equilibrium for Intermittent Symplectic Maps

نویسندگان

  • CARLANGELO LIVERANI
  • MARCO MARTENS
چکیده

We investigate a class of area preserving non-uniformly hyperbolic maps of the two torus. First we establish some results on the regularity of the invariant foliations, then we use this knowledge to estimate the rate of mixing. Stony Brook IMS Preprint #2005/01 January 2005

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces

In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.

متن کامل

Hölder continuity of solution maps to a parametric weak vector equilibrium problem

In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.

متن کامل

Strong convergence of a general implicit algorithm for variational inequality problems and equilibrium problems and a continuous representation of nonexpansive mappings

We introduce a general implicit algorithm for finding a common element of‎ ‎the set of solutions of systems of equilibrium problems and the set of common fixed points‎ ‎of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings‎. ‎Then we prove the strong convergence of the proposed implicit scheme to the unique solution of the minimization problem on the so...

متن کامل

Local Calculation of Hofer’s Metric and Applications to Beam Physics

Hofer’s metric is a very interesting way of measuring distances between compactly supported Hamiltonian symplectic maps. Unfortunately, it is not known yet how to compute it in general, for example for symplectic maps far away from each other. It is known that Hofer’s metric is locally flat, and it can be computed by the so-called oscillation norm of the difference between the Poincare generati...

متن کامل

Equilibrium in Abstract Economies without the Lower Semi-continuity of the Constraint Maps

We use graph convergence of set valued maps to show the existence of an equilibrium for an abstract economy without assuming the lower semi continuity of the constraint maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005